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Tropical cyclones (TC) are propelled mostly by realization of latent heat that is stored in vapor
coming off warm sea surfaces. The heating occurs when the vapor condenses into cloud drops.
Re-evaporation of the cloud water takes back the released heat, whereas precipitation of the
water as rain fixates the heat in the air. Therefore, it is expected that TC intensities would be
sensitive to precipitation forming processes that affect the amount and distribution of latent
heat release. This has been simulated by numerical models, which showed that cloud
condensation nuclei (CCN) aerosols weaken the storms apparently by slowing the conversion
of cloud drops into precipitation. If so, we should expect that storm predictions that do not take
this aerosol effect into account would over-predict TC intensities. Here we show that increased
aerosols quantities in a TC periphery can explain about 8% of the forecast errors of the TC.
Indeed, actual intensities of polluted TCs were found to be on average lower than their
predicted values, providing supporting observational evidence to the hypothesis. It was also
found that TC intensity might be more susceptible to the impacts of aerosols during their
developing stages and less in the TC mature and dissipating stages.
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1. Introduction

1.1. STORMFURY and TC modification

The idea of modifying Tropical Cyclones (TCs) by aerosols
through their impacts on precipitation forming processes
originated with project STORMFURY (Willoughby et al.,
1985). It was postulated that glaciogenic (ice forming) seeding
of convective clouds just outside the eyewall would freeze their
supercooledwater, so that the released additional latent heat of
freezing would invigorate the seeded clouds and disrupt the
convergence of air into the eyewall and so weaken the
maximum TC wind speed. STORMFURY was inconclusive, to a
large extent becausemost TCs apparently donot have sufficient
supercooled water. Supercooled water is scarce in convective
clouds that form in marine air mass. The pristine maritime air
that typically converges to TCs has small concentrations (few
hundreds cm−3) of cloud drop condensation nuclei (CCN),
. Rosenfeld).
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which form respectively low concentrations of large cloud
drops that are fast to coalesce into raindrops. Therefore, much
of the cloud water precipitates from the rising air before
reaching the freezing level, thus leaving little potential for
supercooled water. Rosenfeld et al. (2007) suggested that the
basic idea of STORMFURY – invigoration of the periphery on
expense of the center–might still work by adding CCN aerosols
to the air ingested by a TC. The early rainout can be delayed by
high concentrations of CCN aerosols, which form a larger
number of smaller cloud drops that are slower to coalesce into
raindrops (Gunn and Phillips, 1957).

The phenomenon of invigoration due to aerosols in polluted
tropical convective clouds was reviewed by Rosenfeld et al.
(2008). Observations of pollution invigorating convection over
land in moist tropical convection were provided by Bell et al.
(2008, 2009a, 2009b), but when moving to the cooler summer
mid-latitudes the ice nuclei role of the pollution aerosols might
be more dominant (Dessens et al., 2001). Most relevant to the
present study over ocean are the observations (Koren et al.,
2010) of deep tropical clouds growing taller in areas containing
greater aerosol quantities as measured by the aerosol optical
erosols modulating tropical cyclones intensities, Atmos. Res.
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thickness (AOT) observed directly by satellites and as calculat-
ed by the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) hindcast model (Chin et al., 2000).

1.2. Model simulations of aerosols weakening TCs

During summer and early fall, intense heating over the
Sahara desert forms a deep mixed atmospheric layer contain-
ing hot, dry air and mineral dust, which is often referred to as
the Saharan Air Layer (SAL). TC weakening was observed to
occur in the presence of the SAL (Dunion and Velden, 2004),
but the effect was mostly ascribed to the dry air and strong
middle level (~2–4.5 km)winds (i.e. enhanced vertical shear)
associated with this air mass. The relationship between dust
and TC intensity was not well understood at that time (Dunion
and Velden, 2004). In 2008, aircraft observations of desert dust
associated the presence of larger aerosol quantities with an
exceptionally vigor outer band of a TC (Jenkins et al., 2008).

These observations prompted numerical simulations
testing the impact of CCN activity of desert dust on TC
intensities (Cotton et al., 2007; Zhang et al., 2007). This was
simulated by adding 2000 CCN cm−3 in the area where the
storms formed compared to simulations with 100 CCN cm−3

(considered to be “clean of pollution”). In the simulation with
the 2000 CCN cm−3 the CCN aerosols weakened substantially
the storm, with peak winds lowered by 25 ms−1 and central
pressure higher by 25 hPa. Independently, in 2007 Rosenfeld
et al. (2007) obtained similar results by simulating the
invigoration achieved due to turning off the warm rain
forming processes at the periphery of a TC. They showed that
the suppression of warm rain led to invigoration in the
periphery coupled by enhanced evaporation and cooling at
the low levels that led to weakening of the TC. However, wind
induced sea spray containing salt aerosols that serve as giant
CCN (GCCN) restored the warm rain and reduced the
simulated TC-weakening effect. Subsequent model simula-
tions provided additional support to this mechanism and
emphasized the role of cold pools of air due to evaporative
cooling that weaken the storms (Carrió and Cotton, 2011;
Khain et al., 2008, 2010; Khain and Lynn, 2011; Zhang et al.,
2009).

2. Methodology

2.1. The storm prediction errors

In this study, we separate the aerosol from other effects by
using TC prediction models that take into account all
meteorological and sea surface temperature properties, but
not the aerosols. If greater aerosol amounts actually act to
decrease storm intensity, the forecastmodelwould tend toover
predict the observed intensities of the more “polluted” storms.
We use this logic to test the hypothesis of aerosols weakening
TCs. The hypothesis that aerosols can explain forecast errors of
forecast models has been tested in the past by Carmona et al.
(2008). Carmona et al. hypothesized that the aerosol AOT can
be used as an explanatory variable in a multiple linear
regression model to the forecast errors of the United Kingdom
Meteorological Office (UKMO)model since thismodel does not
take into consideration the aerosol effect on the temperature.
The finding of Carmona et al. showed that increased aerosol
Please cite this article as: Rosenfeld, D., et al., Pollution and dust a
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quantity was found to be correlated with an over estimation of
the temperature indicating a cooling effect due to the aerosols.
Therefore, the UKMO over estimated the temperature. Includ-
ing the aerosols effect to the UKMO model, could improve the
accuracy of the forecasted temperature.

In this study we test whether variability in aerosols can
explain TC prediction errors of models that do not take into
account the impacts of aerosols. The accuracy of three very
different operational TC prediction models was examined. The
first model is The Geophysical Fluid Dynamics Laboratory
model (GFDL) (Bender et al., 2007). This model was chosen
since the GFDL model has up to now been the only purely
dynamical model that can provide both skillful intensity and
track forecasts. GFDL is based on numerical weather prediction
simulations solving the equations of motion and thermody-
namics of the atmosphere and coupled with the ocean. The
second model is the Statistical Hurricane Intensity Prediction
Scheme (SHIPS) (DeMaria et al., 2005). These twomodelswere
chosen to be examined in this study because they are the
primary guidance models that the National Hurricane Center
(NHC) uses for its operational intensity forecasts.

The SHIPS model is multiple regression scheme which
incorporates climatology, atmospheric environmental pa-
rameters (vertical shear, etc.) and sea surface temperature
(SST) as its predictors. The third model is Decay-SHIPS which
is a forecast model just like SHIPS, however, incorporates the
decaying effect of land on TC intensity.

The historical record of model predictions and actual TC
maximum sustained wind speeds (Vmax) were obtained from
the Automated Tropical Cyclone Forecast (ATCF) database
(Miller et al., 1990) available online from the National Oceanic
and Atmospheric Administration (NOAA). Thewind speeds are
given in knots, where 1 knot is 1.852 km h−1. The data is
available at time steps of 6 h for lead times of 0 to 120 h. This
study examines the prediction errors of Vmax at the forecast
lead times of 12, 24, 36 and 48 h in order to test our hypothesis
on the most accurate forecasts. A forecast with a lead time of
zero is practically the observations.

The Vmax prediction error is defined as

dV max = Vmaxobs−Vmaxpredict ð1Þ

where Vmaxobs is the observed Vmax and Vmaxpredict is the
predicted Vmax. For each forecast model dVmax values were
calculated for each of the four lead times. This study used all
the available ATCF data for 2001–2007 for all Atlantic TCs that
reached hurricane force winds at some time during their
lifecycle and were tracked for at least 48 h. The minimum
intensity for tracking a TC, in our data base was 25 kt. The
analysis could not be extended beyond 2007 because the
aerosol data used here were not available beyond that year.

Anthropogenic aerosols, as well as dust originate from the
continents. For this reason, aerosol quantities usually increase
in the TCs peripheries when the storms reach landfall. TC
intensity is known to decay during landfall. Therefore, in order
to associate the decay of TC to aerosols and not due to landfall,
all landfall TC data were excluded from this study. Thus, in the
data sets of this study, aerosol quantities are not associatedwith
landfall. If a statistical relationship is found between increased
aerosol quantities in the TC periphery to a decrease in TC
intensity, it may be attributed to the microphysical effect that
erosols modulating tropical cyclones intensities, Atmos. Res.
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aerosolsmight have on the TCperipheral clouds, and not due to
their association with land.

The forecasts of the SHIPS and D-SHIPS models differ only
when a TC is at least partially over land. This difference was
used in order to identify the data points over land in the data
sets and exclude them from the statistical analysis. From here
on, the study will discuss the GFDL forecast errors and the
SHIPS forecast errors, because once land is excluded from the
D-SHIPS and SHIPS, they become identical.

In order to compare the forecast accuracy of GFDL and
SHIPS, the standard deviation (SD) of dVmax was compared
at each lead time. Fig. 1 shows the SD of dVmax as a function
of the forecast lead times of 12, 24, 36 and 48 h, for the GFDL
and SHIPS forecast models. As the lead time increases, the SD
of dVmax increases. This signifies that the forecasts become
less accurate and contain more noise with increased lead
times.

Fig. 1 shows that SHIPS forecast error has a much lower
standard deviation in all lead times which coincides with the
fact that SHIPS is a much more accurate intensity forecast
model. These findings coincide with the NHC 2005 annual
verification report comparing model performance to the
official NHC forecast, which found that GFDL provided the
best shorter-range track forecasts while SHIPS was the best
performer in the intensity forecast models (Franklin, 2006).
2.2. The Goddard Chemistry Aerosol Radiation and Transport
model

The aerosol data, in the form of aerosol optical thickness
(AOT) was obtained from GOCART, which calculates the AOT
for black carbon (BC), organic carbon (OC), dust (DU), sea salt
(SS) and sulfate (SU). The model uses the assimilated
meteorological fields generated from the Goddard Earth
Fig. 1. The standard deviation of the TC maximum sustained wind speed
prediction errors (dVmax) as a function of the prediction lead time for theGFDL
and SHIPS models.
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Observing System Data Assimilation System (GEOS DAS)
(Schubert et al., 1993).

The reliability of the results in this study depends on the
accuracy of the GOCART AOTs. Therefore the performance of
GOCART is reviewed here briefly. Since 2000, the capability of
GOCART to hindcast aerosol quantities has repeatedly put to
test in different studies by comparing its AOT values to
ground measurements, satellite imagery and aircraft obser-
vations. Comparisons between the simulated and observed
sulfate concentrations agreed within 30% and captured the
local and regional features in bothmarine boundary layer and
free troposphere (Chin et al., 2000). Comparisons of GOCART
simulations to aircraft measurements of dust and sulfates
showed that the GOCART model agreed with the observation
of individual aircraft flight at various heights (Chin et al.,
2003). In 2004 daily AOT from GOCART was compared with
the Aerosol Robotic Network (AERONET) data over the
northern hemisphere (Chin et al., 2004) both producing
comparable values and similar probability distributions. Daily
comparisons with AERONET at several sites are given also in
Chin et al. (2009) and show good correspondence. In 2007
GOCART simulated BC, OC and finemode dust were compared
to daily ground measurements over the U.S at 135 sites in the
IMPROVE network during 2001 (Chin et al., 2007). These
comparisons showed that the model captures the spatial and
temporal variations of the observed aerosols with high
correlation and low bias. A high correlation of 0.756 between
GOCART and IMPROVEwas found on amonthly averagewhile
the daily correlations varied mostly between 0.4 and 0.7. In
2010 comparisons with the Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) observations
showed generally consistent characterization of both magni-
tude and altitude of trans-Atlantic transport of Saharan dust,
with quantitative agreement within 30% for individual
observations (Yu et al., 2010).

Koren et al. (2010) used daily data from both GOCART
simulations andMODIS observations for testing the hypothesis
of aerosol induced invigoration of deep maritime convective
clouds. They found that regions with larger AOT are associated
with clouds having significantly greater cloud top heights.
Cloud invigoration and increased AOT relation was obtained
with similar clarity from both GOCART and MODIS AOTs for
convective clouds over the Atlantic and pacific Oceans,
independently. This demonstrates the applicability of GOCART
calculated AOT to the central theme of our study, as well as
providing support to the basis of our hypothesis.

2.3. The data set

Two data sets were constructed; one for the GFDL forecast
errors and one for the SHIPS forecast errors. The data sets
contain the TC location (latitude and longitude of the center of
the storm), measured Vmax, the calculated dVmax for each
prediction lead time, the calculated averaged AOT at the TC
periphery for each aerosol type and the averaged precipitable
water (PW). The PW data was incorporated in this study in
order to examine of aerosols affect TC intensity due to their
microphysical activity or because they are associated with dry
air. PW data was obtained from National Centers for Environ-
ment Protection/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis data. The TC periphery was defined to
erosols modulating tropical cyclones intensities, Atmos. Res.
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be at the radius of 300 km from the center of the TC, which
encompasses the maximal radius of most TCs. The averaged
AOTrepresents theaerosols that are ingested into theperiphery
of the TC. Unlike satellite data, the GOCART AOT is not affected
from the clouds and is solely representing aerosol concentra-
tion. The results were found to be insensitive to the selected
radius, so that only the analysis for radius of 300 km is reported.

3. Results

3.1. Relations between the various aerosol species, precipitable
water and dVmax

The main reason for examining the correlations between
the AOT of different aerosol types is to check for the possibility
of multicollinearity. Multicollinearity is a statistical phenome-
non in which two or more explanatory variables in a multiple
regression model are highly correlated. In this situation the
coefficient estimates may have large standard errors and thus
the parameter estimates may change erratically in response to
small changes in the model or the data.

When examining the correlations between the different
aerosol AOT at the TC periphery (Fig. 2), three salient features
were found. The first, the three anthropogenic aerosols: BC, OC
and SUwere found to be highly correlatedwith each other. The
second, higher DU quantities were found to be correlated with
moderate values of the three anthropogenic aerosols. The third,
higher amounts of anthropogenic aerosolswere not found to be
correlated with dust. These three features can be explained by
GOCART calculation of their quantities and transportation. In
the Atlantic basin, the main source of dust is the African desert.
Fig. 2. Scatter plots between the AOT of black carbon (BC), dust (DU), organic carbon
their statistical significance in brackets calculated from a data set of 1553 points.
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However, the anthropogenic aerosols have two sources: North
and South America and Africa. North and South America
produce substantial amounts of the three anthropogenic
aerosols,whilemoderate quantities are produces by theAfrican
continent. Therefore, wind currents from Africa advect both
dust and the three aerosols, whereas air currents from the
American continents advect only the three anthropogenic
aerosols with little or no dust. For this reason, higher dust
quantities were found to be associated with moderate
quantities of the three aerosols, while higher quantities of the
three aerosolswere not found to be statistically correlatedwith
dust. These findings indicate that in the data set used in this
study, all four of these aerosols are not independent of each and
may oppose a multicollinearty problem when using all four as
independent explanatory variables in a regression model
where the dependent variable is the intensity forecast errors.

TC intensity was found to be positively correlated with the
averaged value of PW at the TC periphery (Fig. 3a), indicating
the strong effect of vapor availability on TC intensity. In
contrast, PW is poorly correlated with dVmax (Fig. 3b and c).
Theminor or lack of correlation of the forecast errors with PW
indicates that the models already account fully for the effects
of humidity on intensity.

The next step was to examine the correlations between the
different aerosols and PW. Between the four aerosols, only dust
was found to be negatively correlated with PW, indicated that
dust is associated with drier air (Fig. 4). However, due to the
lack of correlation between PW to dVmax, any negative
association between these aerosols to dVmaxmay be explained
by their microphysical effects and not from their presence
marking drier air. The goal of this study is to try and single out
(OC), sea salt (SS) and sulfate (SU). The figure presents the correlations with

erosols modulating tropical cyclones intensities, Atmos. Res.
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Fig. 3. From left to right, scatter plots between the precipitable water (PW) [kg m−2] to TC intensity (Vmax [knots]), GFDL and SHIPS intensity forecast errors,
dVmax [knots], respectively. The figure includes the size of each data set, the Pearson correlation, its statistical significance in brackets and the simple linear
regression relationships between PW to Vmax (left) and dVmax (middle and right figure).
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the signal from only the aerosols and weed out other factors
which might contribute to the patterns between aerosols and
the forecast errors.

3.2. A GLM Model

After statistically analyzing the relationships between the
different aerosols the next step was to try a fit of a regression
model where the aerosols serve as explanatory variables to
dVmax. The GOCART values of aerosol AOT of DU, BC, OC and
SU, averaged at the TC periphery, were chosen to serve as
explanatory variables in the regression model, while SS could
not serve as an independent variable to dVmax since its value
over ocean is dependent on wind speeds (Chin et al., 2002). In
the regression model, the dependent variable dVmax within
eachTC is given as a series ofmeasurementsover time thathave
a serial autocorrelation, while observations in different TCs are
independent. This covariance structure may be accounted for
byusing a generalmultiple linear regressionmodel (GLM) (SAS
PROC MIXED, (SAS Institute Inc., 2004)). To comply with the
statistical model assumption of homogeneity of the error
variance, the explanatory variables were transformed into
their natural logarithm.Another considerationwhichneeded to
be made was the removal of extreme values of residuals in
order for the residuals to be normally distributed. The removal
of these data points excluded dVmax values which were
Fig. 4. Scatter plots between the AOT of black carbon (BC), dust (DU), organic carbon
figure presents the correlations with their statistical significance in brackets calcula
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considered to be outliers. The cutting off pointwas the absolute
residual value that exceeded three standard deviations. This
excluded 0.83% and 1.36% from the GFDL and the SHIPS data
points, respectively.

When all four of the aerosols: BC, DU, OC and SUwere used
as four different explanatory variables in the GLM for the
dependent dVmax, none of these explanatory variable co-
efficients estimates reached statistical significance (Table 1).
The failure of each aerosol type to serve as an explanatory
variable to the forecast intensity error could be explained by
two reasons. Either the aerosols in the TC periphery cannot
explain the variance of dVmax for neither GFDL nor SHIPS, or,
each aerosol as an independent explanatory variable cannot
explain variance in dVmax. In order to explore the latter, two
new variables were created: Pollution, which is the sum of the
three anthropogenic aerosols in the periphery and total
aerosols AOT (TAOT), which is the sum of all four of the
aerosols used in this study.

For each forecast model four GLMs were constructed for
the model forecast lead time of 12, 24, 36 and 48 h. In each
lead time four different combinations of explanatory vari-
ables were tested. The first run included only one explanatory
variable, the TAOT, the second run attempted to differentiate
the effects of anthropogenic aerosols and dust by using two
explanatory variables: pollution and dust as two different
explanatory variables. Runs three and four used one
(OC), sea salt (SS) and sulfate (SU) to precipitable water (PW) [kg m−2]. The
ted from a data set of 1553 points.

erosols modulating tropical cyclones intensities, Atmos. Res.
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Table 1
The multiple regression coefficients and significance levels for explanation o
variability in dVmax [knots] as a function of AOT of dust, organic and black
carbon GOCART calculated aerosols. The dependents are the intensity forecas
errors for values that are for GFDL and SHIPS predictions of 24 h lead time.

Forecast lead time: 24 h

Forecast model GFDL SHIPS

N of cases 1426 1522

Black carbon −1.6599 (0.6497) 2.1355 (0.4489)
Dust −0.2475 (0.7178) −0.4129 (0.4340)
Organic carbon −1.8349 (0.3979) −1.3647 (0.4155)
Sulfate 2.299 (0.255) −1.0910 (0.4869)
Intercept −13.3387 (0.3088) −0.2385 (0.9812)

Table 2
The logarithmic multiple regression coefficients and their significance level
and SHIPS predictions of 12, 24, 36 and 48 h lead time. The explanatory varia
Pollution for Run 3; and Dust for Run 4. The numbers in bold are statistical

Lead Time 12 h 24 h

Forecast model GFDL SHIPS GFDL

N 1531 1591 1426

Run 1 TAOT −1.4797
(0.1345)

−0.7151
(0.2050)

−1.3206
(0.3128)

Intercept −2.8636
(0.2859)

−1.0986
(0.4716)

−3.5072
(0.3269)

Run 2 Pollution 0.5550
(0.5939)

−0.4397
(0.4705)

−0.3967
(0.7741)

Dust −1.4633
(0.0028)

−0.07932
(0.7714)

−0.5815
(0.3842)

Intercept −3.5738
(0.3742)

−0.9197
(0.6917)

−3.7794
(0.4829)

Run 3 Pollution 0.8208
(0.4350)

−0.4241
(0.4842)

−0.3132
(0.8200)

Intercept 3.5285
(0.2862)

−0.5336
(0.7797)

−1.0000
(0.8175)

Run 4 Dust −1.4846
(0.0023)

−0.06322
(0.8159)

−0.5253
(0.4302)

Intercept −5.3694
(0.0147)

0.5045
(0.6793)

−2.3767
(0.4370)
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explanatory variable, pollution and dust, respectfully. The
results are presented in Table 2 for the forecast errors
(dVmax) of the two forecast models at the forecast lead
time of 12, 24, 36 and 48 h. From Table 2, it is apparent that
the most suitable explanatory variable to dVmax is the TAOT
due to its highest statistical significance. The GLM for the lead
time of 36 h presents the strongest signal for the aerosols
since it is the only lead time for which both the total aerosols
AOT (TAOT) of SHIPS and GFDL are statistically significant and
similar. In the case for SHIPS it is apparent that as the lead
time increases, the coefficient estimates for the TAOT variable
increased in value and statistical significance.

Aside from statistical significance, the TAOT coefficient
values can also be compared between the different GLMs at
the different lead times according to the signal to noise ratio.
Here, the noise is the error of the forecast model established
by the standard deviation of dVmax (Eq. 3) and the signal is
the TAOT effect on dVmax as found in Table 2. As the lead
time increases, the accuracy of dVmax decreases. This is
apparent in Fig. 1, which showed how the standard deviation
of dVmax for both GFDL and SHIPS dVmax increased with the
increased lead time. In order to calculate the signal to noise
(in brac
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ratio, the effect of adding one standard deviation of the TAOT
coefficient was calculated according to Eq. 2.

signal = CTAOT log meanTAOT + sdTAOTð Þ−CTAOT log meanTAOTð Þ
ð2Þ

noise = SD of dVmax ð3Þ

Where CTAOT is the coefficient estimate for the TAOT
variable, meanTAOT is the average value of the TAOT in all the
data and sdTAOT is its standard deviation. The SNR calculation
for each forecastmodel in each lead time is presented in Table 3.

The SNR values support the findings of Table 2which is that
the aerosols effect on the forecast errors is the most significant
for theGFDLdVmaxof lead time for 36 h. For SHIPSdVmaxboth
the lead time of 36 and 48 gave similar SNR values.

In order to get a quantitative example of how increased AOT
in the TC periphery affects dVmax, the coefficient estimate of
the total aerosol AOT for both GFDL and SHIPS dVmax at the
lead time of 36 h were plugged into Eqs. 4 and 5, which
represent the GLM with and without the explanatory variable
transformation to its natural logarithm. This created two
different sets of equations, one for each forecast model. In
Eqs. 4 and5, theparametersA andB represent the intercept and
C and D the TAOT coefficient estimate for the logarithmic and
linear transformation, respectively. The coefficient estimates
for the lead time of 36 h with and without the logarithmic
transformation appear in Table 4.

dVmaxlog = A + CTAOT log TAOTð Þ ð4Þ

dVmaxlinear = B + DTAOT⋅TAOT ð5Þ

Eqs. 4 and 5 were used to calculate the effect of increasing
the aerosol variable with respect to its average value. Two
different methods of increasing the TAOT about the mean
kets) for explanation of variability in dVmax [knots]. The values are for GFDL
dVmax are: total aerosol AOT (TAOT) for Run 1; dust and pollution for Run 2;
cant at the 0.05 level.

36 h 48 h

IPS GFDL SHIPS GFDL SHIPS

22 1311 1441 1179 1338

1.8107
.0746)

−3.2829
(0.0492)

−2.6350
(0.0420)

−1.1704
(0.5463)

−3.2552
(0.0341)

5.2052
.0604)

−9.6304
(0.0361)

−8.6681
(0.0152)

−4.6334
(0.3863)

−12.3489
(0.0040)

1.1187
.3111)

−2.8782
(0.0984)

−2.3923
(0.0862)

−1.3277
(0.5048)

−2.7964
(0.0897)

0.4523
.3790)

0.1381
(0.8742)

−0.1424
(0.8376)

0.8755
(0.4042)

−0.1411
(0.8693)

5.8435
.1636)

−9.1657
(0.1798)

−9.7236
(0.0673)

−1.7547
(0.8252)

−13.0150
(0.0384)

1.0781
.3277)

−2.8877
(0.0963)

−2.3924
(0.0857)

−1.4101
(0.4768)

−2.8121
(0.0872)

3.7823
.2765)

−9.7982
(0.0730)

−9.1082
(0.0386)

−5.8422
(0.3488)

−12.4503
(0.0176)

0.4181
.4130)

0.2164
(0.8034)

−0.1482
(0.8314)

0.9083
(0.3854)

−0.2125
(0.8053)

2.2794
.3263)

−0.04040
(0.9920)

−2.4592
(0.4438)

2.4270
(0.6172)

−4.8254
(0.2284)
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Table 3
Signal to noise (SNR) calculation for both GFDL (left) and SHIPS (right)
intensity forecast errors for the lead times of 12, 24, 36 and 48 h. The absolute
value of the signal is represented.

Lead
time

GFDL SHIPS

Noise Signal (abs) SNR Noise Signal (abs) SNR

12 h 14.12 0.781 0.055 10.12 0.377 0.037
24 h 17.08 1.264 0.041 14.15 0.931 0.067
36 h 20.43 1.709 0.085 17.12 1.391 0.081
48 h 23.25 0.618 0.026 20.16 1.718 0.085

Table 4
The same as Table 2, but for lead time of 36 h, with and without logarithmic
transformation.

Lead time: 36 h

Forecast model GFDL SHIPS

N of cases 1311 1441

Transformation Logarithmic Linear Logarithmic Linear

Run 1 TAOT −3.2829
(0.0492)

−30.3452
(0.0669)

−2.6350
(0.0420)

−25.4859
(0.0433)

Intercept −9.6304
(0.0361)

1.6836
(0.3949)

−8.6681
(0.0152)

0.5026
(0.7566)

Run 2 Pollution −2.8782
(0.0984)

−24.6646
(0.2627)

−2.3923
(0.0862)

−27.4035
(0.1448)

Dust 0.1381
(0.8742)

−38.1612
(0.1328)

−0.1424
(0.8376)

−23.7099
(0.1882)

Intercept −9.1657
(0.1798)

1.5734
(0.4333)

−9.7236
(0.0673)

0.5539
(0.7401)

Run 3 Pollution −2.8877
(0.0963)

−24.7709
(0.2580)

−2.3924
(0.0857)

−28.8988
(0.1232)

Intercept −9.7982
(0.0730)

0.4748
(0.7978)

−9.1082
(0.0386)

−0.1295
(0.9348)

Run 4 Dust 0.2164
(0.8034)

−38.3283
(0.1311)

−0.1482
(0.8314)

−25.3816
(0.1596)

Intercept −0.04040
(0.9920)

0.1215
(0.9368)

−2.4592
(0.4438)

−0.9941
(0.4460)
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were conducted. The first method was to calculate the effect
of increasing AOT 0.01 from the average value of the TAOT.
The second method was to increase of the TAOT by its
Fig. 5. Left: dVmax as a function of the total aerosols AOT (Eqs. 4 and 5) for the
relationships and the broken line for the linear relationship. Right: the distribution

Please cite this article as: Rosenfeld, D., et al., Pollution and dust a
(2011), doi:10.1016/j.atmosres.2011.06.006
standard deviation (specified in Fig. 5) for obtaining a more
realistic estimate of the effect of the aerosol variability on the
intensity forecast errors. The validity of these calculations is
limited to addition of AOT within the limited range of the
observed variability of the TAOT, as given in Fig. 5. The results
are given in Table 5 for both equations of the two forecast
models. Fig. 5 also shows the relationship between the
increased total aerosol AOT to dVmax.

In Table 5, it is apparent that the effect of increasing the
TAOT quantity on the values of the dVmax was similar for
both the linear and logarithmic transformation, thus assuring
the statistical accuracy of the GLM. According to Table 5, an
increase of 0.01 in the total aerosols AOT incurs a reduction of
nearly ~−0.2 to ~−0.3 knots in dVmax, as calculated with
both the logarithmic and linear regression models based on
all the two forecast models: GFDL and SHIPS for the 36 h lead
time. In Fig. 5 it is apparent that dVmax values decrease as a
function of increased total aerosol AOT. Thus, as the aerosol
quantity increases in the TC periphery, the forecast models
are more likely to overestimate the TC intensity. An increase
of one SD of TAOT incurs a decrease of 1.39 knots according to
the SHIPS GLM and 1.73 knots according to the GFDL GLM.
Comparing the aerosol signal to the noise, one SD of dVmax,
at the lead time of 36 h shows that this decrease can account
for 8.1% of the forecast errors of SHIPS and 8.5% if the forecast
errors of GFDL. For both forecast models, aerosols were found
to be able to explain the same variance in the intensity forecast
errors. This indicates that if aerosols were to be included in
these forecast models, they would affect the TC intensity in the
same manner. The fact that adding the aerosols to the forecast
model in the calculation of TC intensity can improve SHIPS
predictions implies that the predictors of SHIPS are not strongly
correlated with the aerosols.

The robustness of the statistical analysis was tested by
repeating all the analyses on the data partitioned into three
periods: 2001–2002, 2003–2004, and 2005–2007. This parti-
tion has the most similar number of cases in each subset. The
results for the total aerosol AOT (TAOT) (run 1 in the previous
tables), which was chosen as the run to signify the aerosols
GLM received for the forecast models. Solid lines represent the logarthmic
of the total aerosols AOT, with its descriptive statsitcs.

erosols modulating tropical cyclones intensities, Atmos. Res.
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Table 5
Sensitivity [knots] of dVmax to increasing AOT of one of the aerosols by 0.01
from its average values and increasing AOT by their standard deviation as
shown in Fig. 2. The additions were done while keeping the total aerosol AOT
at its average values as shown in Fig. 2.

Forecast
model

Effect of
increasing
AOT by
0.01 log

Effect of
increasing the
AOT by 0.01
linear

Effect of
increasing
AOT by the
AOT SD log

Effect of
increasing AOT
by the AOT SD
linear

GFDL −0.37 −0.3 −1.73 −1.79
SHIPS −0.3 −0.25 −1.39 −1.5

Table 6
The logarithmic multiple regression coefficients the total AOT (TAOT) and
their significance levels for explanation of variability in dVmax [knots] in
each period. The values are for GFDL and SHIPS predictions of 36 h lead time.

Partitioning Explanatory variables GFDL SHIPS

2001–2002 N 335 365
TAOT −4.9199

(0.1443)
−3.3884
(0.2144)

Intercept −21.1756
(0.0403)

−14.095
(0.909)

2003–2004 N 424 479
TAOT −5.5441

(0.0663)
−2.0484
(0.3295)

Intercept −10.7337
(0.1782)

−4.7083
(0.3910)

2005–2007 N 553 596
TAOT −2.8982

(0.2426)
−3.2992
(0.1219)

Intercept −7.8841
(0.2308)

−10.3163
(0.0699)
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effect on TC intensity, are replicated with rather remarkable
similarity for both the SHIPS model and the GFDL model
(Table 6). This statistical analysis suggests that the results
Table 7
The logarithmic multiple regression coefficients and their significance levels for expl
and SHIPS predictions of 36 h lead time. Run 1 is with the variable total aerosol AOT
variables: dust and pollution .Run 3 is with the variable pollution as the explanato
numbers in bold are statistically significant on a 0.05 level.

Lead time 36 h

Region Region 1

Forecast model GFDL SHIPS

Number of data points 435 449

Run 1 TAOT −2.0318
(0.5569)

−0.8854
(0.7650)

Intercept −6.5950
(0.4579)

−4.8126
(0.5316)

Run 2 Pollution −2.2517
(0.4831)

−1.4317
(0.5973)

Dust 3.2428
(0.0855)

3.6955
(0.0205)

Intercept 9.4522
(0.5180)

12.8253
(0.3010)

Run 3 Pollution −3.6888
(0.2396)

−3.0910
(0.2475)

Intercept −11.2665
(0.1885)

−10.8154
(0.1447)

Run 4 Dust 3.5701
(0.0495)

3.9113
(0.0111)

Intercept 17.1018
(0.0784)

17.7631
(0.0304)
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found are not arbitrary since they are replicated in the annual
segments with rather remarkable similarity. Although, not
statistically significant, the coefficient estimates are similar to
those received in Table 2 and also, are similar between GFDL
and SHIPS.

3.3. Partitioning of tropical cyclones according to geographical
location

Desert dust originates from the Sahara, and therefore
affects mainly the eastern Atlantic while its concentration
diminishes westward. Respectively, the analysis was repeat-
ed for the SHIPS model dividing the dataset into three equal
sample size according to longitudinal bands, Φ≤−68.4;
−68.4bΦ≤−52.9; ΦN−52.9, where Φ is the longitude in
degrees. This partition was chosen in order to examine if the
coefficient estimates would alter in respect to the proximity
to the continents (Africa and America). The partitioning of the
GFDL into regions did not yield statistically significant results;
however, SHIPS did (Table 7). The partitioning of the SHIPS
data to three different regions for the SHIPS data shows that
the relation of Total Aerosol Optical thickness (TAOT) with
dVmax is negative for all regions, but becomes statistically
significant only for region 3.

Due to the high correlations between all these explanatory
variables it is not clear if dust in region 3, in run 4, is significant
on its own merit, or due to its correlation with the other
aerosols, therefore, the attribution of the negative effect on the
TC intensity cannot bemadewith respect to any specific type of
aerosol.

In region 2, run 4 it is seen that dust as the sole explanatory
variable although negative, is not statistically significant.
Therefore, relating the indicated effect in regions 2 as well as
in region 3 to the dust itself would be incorrect, as the dust
anation of variability in dVmax [knots] in each region. The values are for GFDL
(TAOT) as the explanatory variable for dVmax. Run 2 is with the explanatory
ry variable. Run 4 is with the variable dust as the explanatory variable. The

Region 2 Region 3

GFDL SHIPS GFDL SHIPS

441 483 436 511

−1.5736
(0.5944)

−0.7570
(0.7204)

−2.9964
(0.1707)

−3.7301
(0.0407)

−4.3200
(0.6290)

−2.0165
(0.7524)

−6.9423
(0.2229)

−9.4076
(0.0471)

0.8860
(0.7877)

4.3333
(0.0690)

−4.4416
(0.2051)

−2.8216
(0.0194)

−1.3990
(0.4566)

−2.9320
(0.0287)

−0.2996
(0.8402)

0.9094
(0.7292)

−2.6190
(0.8265)

2.6567
(0.7558)

−14.7378
(0.1459)

−6.7291
(0.3905)

0.2124
(0.9463)

2.8382
(0.2151)

−4.7675
(0.1249)

−1.4919
(0.5411)

0.9871
(0.9278)

9.7956
(0.2176)

−14.7805
(0.1441)

−5.0767
(0.5218)

−1.2561
(0.4858)

−2.2644
(0.0805)

−1.2189
(0.3464)

−2.6559
(0.0166)

−5.0088
(0.5281)

−9.2352
(0.1031)

−3.5910
(0.4407)

−9.0686
(0.0237)
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Fig. 6. The distribution of the variables: total aerosol AOT (TAOT), pollution and dust in each region. From left to right: the columns are for regions 1, 2 and 3.

Table 8
The descriptive statistics of the “age index” in each region, including the
mean value of the age index with the addition of one standard deviation
(SD). Also shown are the values of the three different percentiles of the age
index, the 25th percentile (25%), the 50th percentile (50%) and the 75th
percentile (75%).

Statistic Region 1 Region 2 Region 3

Mean±SD 51.2±24.6 46.5±24.5 46.6±32.5

25% 31.5 28.01 16.4
50% 53.5 45.3 40
75% 71.3 64.3 78.4
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carries with it always well correlated amounts of pollution.
Pollution that can occur without dust does not produce a
significant signal in regions 2 and 3; therefore, relating the
indicated effect in region 2 to pollution itself would also be
incorrect. The conclusion is that each aerosol on its own cannot
explain dVmax variability because all aerosols are inter-
correlated. In region 1, a significant positive relation of dust
withdVmaxwas founddespite the very small values of the dust
mean AOT, which, according to the aerosol distribution in each
region (presented in Fig. 6) is 7 times smaller than in region 3.
This statistical relationship evoked further statistical analysis to
explore the possible microphysical impact of aerosols which
might be region dependent.

The TAOT coefficient estimates are similar for region 3 and
for all the regions (Table 2, lead time 36 h). Therefore, it
appears that region 3 is the main contributor to the overall
coefficient estimate of the TAOT variable of run 1, when
considering all the regions. A hypothesis which could explain
the statistical significance of region 3 and the lack of
significance in region 1 is that the TCs in the eastern Atlantic
are in their initial and developing stages while farther west, in
regions 2 and 1, TCs are in their mature and dissipating stages.
Therefore, in region 3, the TC intensity is more susceptible to
increased aerosol quantities. Zhang et al. (2009) simulated
that when CCN is added to the initial environment in which
the TC develops the aerosols had a larger impact on the TC
intensity compared to when added just to the outer rainbands
in the mature stage.

In order to examine this hypothesis on the data set of this
study, a new variable was calculated named “age index”. Each
TC in the data set has a different number of data points. A
Please cite this article as: Rosenfeld, D., et al., Pollution and dust a
(2011), doi:10.1016/j.atmosres.2011.06.006
consecutive discrete variable was created in the data set
which associated each data time step a number. Its value
starts out in 1 for each TC and its length is the number of data
points in each TC. This was then divided by the total amount
of data points available for each TC, creating a new variable
which associated to each data point, relatively, what life stage
the TC is in, the “age index” variable. When this variable
equals 100%, it is associated to the last data point available of
that TC and numbers close to 0 are associatedwith data points
at the beginning of the TC life. The notion that regions 2 and 3
contain TC data that is associated to the earlier stages in a TC
lifecycle is supported in Table 8 which shows the “age index”
descriptive statistics in each region. According to the
percentiles value of the age percentage in each region, it is
evident that TCs in region 3 are younger than in regions 2 and 1.
erosols modulating tropical cyclones intensities, Atmos. Res.
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In order to get a clearer picture with regard to TC
susceptibility to aerosols as a function of the TC life stage, the
data was divided into three groups according to the age
percentage variable. Group one contained the age percentage
value between1% and 33%, group 2, 34%–66% and group 3 67%–
100%. The results are presented in Table 9. According to these
results, the GFDL model forecast errors are less responsive to
this division compared to SHIPS. For SHIPS, only in the earlier
stages of the TC, was its intensity susceptible to aerosol
decaying effect while in the two later stages there were no
significant associations between the forecast errors and the
aerosols. For GFDL, none of the groups was found to have a
significant association with aerosols, however, in group 2,
which contained the age percentage of 34%–66%, the coefficient
estimate was the most significant.

From this analysis it may be indicated that TC intensity is
in fact more susceptible to aerosols in its earlier stages in
comparison to its later stages.

4. Discussion, summary and conclusions

This study uses for the first time forecast values from two
independent TC forecast models to separate the aerosols from
meteorological factors. The statistical results in this study
support the hypothesis that CCN aerosols weaken TC intensity.
According to the hypothesis, the microphysical effects of the
CCN aerosols invigorate the clouds at the periphery of the
storms and induce evaporative cooling at the lower levels,
which weaken the airflow into the eyewall and hence reduce
themaximumwind speeds (Rosenfeld et al., 2007; Zhang et al.,
2009).

These findings underline the importance of precipitation
forming and evaporating processes in TC clouds, especially
during the developing stages of the TC. This accentuates the
need to simulate the cloud aerosol interactions and the
dynamic responses for obtaining additional improvements in
TC prediction models. The dynamic responses, especially
through the modification of the cold pools, might also be
important in the process of the TC eyewall replacement,
Table 9
The multiple regression total aerosol AOT (TAOT) coefficients and their
significance levels for explanation of variability in dVmax [knots] in each
“age” group. The values are for GFDL and SHIPS predictions of 36 h lead time
The numbers in bold are statistically significant on a 0.05 level.

Age percentage Explanatory variable GFDL SHIPS

till 33% N
TAOT −3.8973

(0.1667)
−4.5633
(0.0133)

Intercept −12.059
(0.1097)

−15.2688
(0.002)

33%–66% N
TAOT −4.9418

(0.0839)
−3.1406
(0.193)

Intercept −12.346
(0.1307)

−6.3566
(0.3563)

67%–100% N
TAOT −2.5208

(0.2803)
0.6602
(0.7627)

Intercept −7.9026
(0.224)

0.7733
(0.8992)

Please cite this article as: Rosenfeld, D., et al., Pollution and
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dust a
which is a cause for rapid and poorly predicted changes in the
TC intensities (Houze et al., 2007).

This study showed that aerosols can explain variability of
TC prediction errors. Therefore, incorporation of the aerosol
effects in TC prediction models might increase their accuracy.
A proper formulation of the effects of aerosols in TC
prediction models requires additional research involving in
situ measurements of aerosols and cloud properties, to be
conducted with the TC monitoring airplanes in storms
ingesting air masses with various aerosols.
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